周期性起伏四层磁性薄膜的克尔效应

张绍银*,艾树涛

临沂大学物理与电子工程学院,凝聚态物理研究所,山东临沂 276005

摘要 结合干涉光刻和磁控溅射制备了一维周期性起伏的磁性多层薄膜。利用扫描探针显微镜对样品的微结构 进行表征,利用椭偏仪和磁光测量系统对样品的光学性能参数和磁光克尔效应进行测试和研究。实验结果发现, 磁性多层薄膜磁光性能得到极大的提升,磁光增强的克尔谱峰值与条带的宽度、中间层二氧化铪层的厚度有关;利 用介质层的厚度可调制复合薄膜的磁光特性。进一步研究发现横克尔效应的增强现象。理论计算的结果证实,磁 光增强源于光学腔干涉共振和磁等离激元的耦合效应。

关键词 表面光学; 磁光薄膜; 克尔效应; 等离激元; 光学腔 中图分类号 O436 **文献标识码** A

doi: 10.3788/AOS201939.0824001

Kerr Effect for Orderly Corrugated Magnetic Quadrilayer Thin Film

Zhang Shaoyin*, Ai Shutao

Institute of Condensed Matter Physics, School of Physics and Electronic Engineering, Linyi University, Linyi, Shandong 276005, China

Abstract The one-dimensional orderly nano-corrugation of magnetic quadrilayer thin film was fabricated by means of interference lithography (IL) and magnetron sputtering techniques. Scanning probe microscope (SPM) was used to characterize morphologies of the samples. The magneto-optical Kerr effect (MOKE) and optical parameters measurement were performed with a homemade MOKE system and ellipsometry (ELLIP-A), respectively. The experimental results show that the magneto-optical Kerr signal of the nanostructure is significantly enhanced, the Kerr peak is connected with the stripe width and the thickness of intermediate HfO₂ layer, and the magneto-optical properties of the corrugated magnetic thin film can be tuned by the thickness of the intermediate HfO₂ layer. Furthermore, the enhancement of transverse magneto-optical Kerr effect is observed. The theoretical calculations show that the magneto-optical Kerr enhancement of the system can be manipulated significantly by the coupling between plasmon resonance and cavity effect.

Key words optics at surfaces; magneto-optical thin film; Kerr effect; plasmons; optical cavity OCIS codes 240.0310; 190.3270; 240.6680; 210.3810

1 引 言

磁性物质具有原子或离子磁矩。这些具有固定 磁矩的物质在外磁场作用下,电磁特性(磁导率、介 电常数、磁化强度、磁畴结构、磁化方向等)会发生变 化,致使光波在其内部的传输特性,如偏振面、相位 或散射特性也随之发生变化。光与磁场中的物质之 间相互作用所产生的各种现象,称为磁光效应。磁 光效应包括法拉第磁光效应、克尔效应、科顿-穆顿 效应、塞曼效应及磁致双折射效应。其中克尔效应 的研究与应用,引起人们的极大关注。为此人们进 行了长期的努力,做了广泛的研究[1-4]。

根据有效光学常数理论,对于磁性材料及其非 磁性材料的复合纳米多层结构,可以通过各层材料 和层厚的调节,达到调整有效光学常数、改善复合材 料磁光性能的目的。对两种不同介电常数材料的界 面,特别是贵金属与介电常数为正的非金属材料,在 电磁场的激发下会产生极化电荷,这些正负极化电 荷沿界面振荡波的传播,产生表面等离激元 (SP)^[5]。表面等离激元分为两种:表面等离极化激 元(SPP)与局域表面等离激元(LSP)。人们利用周 期性起伏的磁性介质薄膜,产生等离激元共振,极大

基金项目:山东省自然科学基金(ZR2016AL09)、临沂大学博士启动金(40615046)

* E-mail: shaoyinzhang@163.com

收稿日期: 2019-03-19; 修回日期: 2019-04-07; 录用日期: 2019-04-22

增强克尔信号^[6],这是近些年兴起的磁等离激元研 究,即利用磁性材料表面等离激元的激发对磁光效 应进行调制^[7]。另一方面,利用复合多层的光学干 涉腔,通过光与磁性薄膜界面间的反射与干涉,也获 得了磁光增强效应^[8]。在之前的研究中,发现了4 层平整薄膜的腔效应能够极大增强克尔信号^[9],在 一维条形起伏的四层薄膜中,在阵列起伏较大时,出 现 SPP与LSP的共振激发,纵向克尔效应得到极大 增强,同时克尔角出现符号翻转^[10]。为进一步延续 上述工作,本文继续引入电介质层,使其与磁性金属 层相结合,制备复合多层周期性起伏的一维磁性纳 米结构,将等离激元与光学腔干涉效应相结合,进一 步探讨复合磁性纳米薄膜磁光纵向、极向和横向克 尔效应增强的可能性。

2 实验方法和理论方法

首先用匀胶机将正胶 AR-P 3170 以 5000 r/min 的转速旋涂在硅基片上,并在 95 ℃的电热板上烘烤 1 min。利用扫描探针显微镜(SPM)测量光刻胶的 厚度,控制厚度为 55,60,70,80 nm。然后进行干 涉光刻,所用 He-Cd 激光器发射波长为442 nm,调 整入射角,曝光周期分别为 330,340,350 nm,将光 刻的样品浸入显影液,显影去掉感光部分,获得光刻 胶的周期性条形阵列。样品表面结构均匀,样品基 片的面积为1.5 cm×1.5 cm。利用磁控溅射在条形 的光刻胶表面依次溅射 Ag/HfO₂/Co/HfO₂,其中 Co、Ag采用直流溅射,工作气体为氩气,气压调为 0.5 Pa: HfO₂采用交流射频溅射,溅射气压调为 1 Pa。依次溅射各层的厚度为 Ag(40 nm)/HfO₂ $(15,30,40, 45 \text{ nm})/\text{Co}(15 \text{ nm})/\text{HfO}_2(15 \text{ nm})_{\circ}$ 最后,在光刻胶的阵列上获得4种不同厚度的4层 复合薄膜,薄膜表面是具有周期性起伏的条形纳米 阵列。这里,取HfO,作为介质层,是因为HfO,化 学稳定性好,折射率无虚部,无吸收损耗,目 HfO? 与钴在可见光范围内折射率相近,匹配较好,从而在 二者界面上有较高透射率,能增强进入光学微腔的 光强度,更好地激发光学腔效应。其中顶层 HfO₂ 是为了增强光透射,中间层的 HfO2 与 Co、Ag 层构 成法布里-珀罗干涉腔,光在腔内反射干涉,增加光 与磁性层作用的次数,适当调整腔的介质厚度,可获 得干涉极大,以增进磁性层克尔响应^[9]。样品的形 貌如图 1(a)、(b)所示,图中可见其周期为 330 nm, 条宽约为170 nm,样品表面结构均匀。图1(c)为薄 膜磁光克尔回线,显示复合薄膜的良好磁性。 图 1(d)为薄膜的多层结构示意图,图中电场矢量在 入射面内,磁场分量垂直于入射面。

图 1 HfO₂(15 nm)/Co(15 nm)/HfO₂(30 nm)/Ag(40 nm)样品。(a) 磁控溅射后的样品的原子力显微图; (b)样品表面的轮廓图;(c)薄膜的磁光克尔回线;(d)入射光场的偏振示意图, PR(Photoresist)为光刻胶,入射光为 p 光 Fig. 1 Sample of HfO₂(15 nm)/Co(15 nm)/HfO₂(30 nm)/Ag(40 nm). (a) Atomic force micrograph of the sample after magnetron sputtering; (b) 3D surface profile of the array; (c) Kerr hysteresis loop of the thin film; (d) schematic of p-polarized light incidence to surface of the nanocorrugation array, PR stands for photoresist

采用纵向和极向磁光测量装置,光源是 Continuum 公司的 SureLite 20 脉冲激光,可以提 供闪光频率为 20 Hz 的单色光,单脉冲宽度约为 1 ns,能量可达 90 mJ。电磁铁由高精度电源提供 电流以保证磁场稳定,极向磁感应强度最大为 1.8 T,纵向磁场强度最大可达 1.59×10⁵ A/m。这 套系统的克尔角灵敏度已达 0.2',满足测量要求。

横克尔测量系统采用自动角分辨光谱测量系统 (R1-A-UV),电磁铁的磁场垂直于入射面,磁场强 度达1.59×10⁵ A/m,系统的入射臂和接收臂均可 以绕轴中心旋转,可以自由地改变入射角和反射角。 这套系统的测量精度优于0.1%,满足横克尔测量 要求。

为分析磁光增强效应的物理机制,理论计算磁 性膜表面的传播等离激元 SPP 激发的条件,SPP 波 矢需满足^[11]

$$|\mathbf{k}_{\rm SPP}| = \frac{2\pi}{\lambda} \sqrt{\frac{\varepsilon_{\rm m} \varepsilon_{\rm d}}{\varepsilon_{\rm m} + \varepsilon_{\rm d}}}, \qquad (1)$$

式中:λ 是入射波长;ε_m 是金属的介电常数;ε_d 是介 质的介电常数。

在一维的条形起伏薄膜磁性金属层与介质界面

处,等离激元激发所满足的波矢匹配条件为[12]

$$\boldsymbol{k}_{\text{SPP}} = \boldsymbol{k}_x + n\boldsymbol{G}, \qquad (2)$$

式中:k_x为入射波矢沿与条形垂直方向的投影;G 为一维阵列的倒格式矢量;n 为波的衍射级次。

另外,为进一步阐述周期阵列磁光效应的物理 机制,应用 COMSOL 软件实现了复合薄膜光场分 布的理论模拟。COMSOL 是以有限元方法为基础 的数值仿真软件,具有高效的计算性能。

3 分析与讨论

3.1 复合薄膜的纵向磁光效应

保持样品的周期 340 nm 和条形高度 60 nm 不 变,改变条形宽度。考察条形宽度对磁光效应的影 响。利用磁光测试系统和椭偏仪测量系统,分别测 试了 3 个样品的纵向克尔谱与反射谱,所得结果见 图 2。在测量中施加 1.59×10⁵ A/m 的面内纵向磁 场,以使样品饱和磁化,取入射角为 45°。实验发 现,在条形方向垂直于入射面时,条形宽度为 170, 180 nm 的样品克尔角符号没有发生改变,宽度为 160 nm 的样品克尔角符号发生了翻转,3 个样品的 反射谱均存在谷值。

图 2 条形方向与入射面垂直时,3 个不同条纹宽度的样品的纵向克尔谱与反射谱。(a)纵向克尔谱;(b)反射谱 Fig. 2 Longitudinal Kerr spectra and reflectivity of the three samples with different stripe widths when the stripes' direction is perpendicular to the incident plane. (a) Longitudinal Kerr spectra; (b) reflection spectra

由(1),(2)式计算得到,在45°入射的条件下, 周期为340 nm 条形阵列于 λ=568 nm 波长处能 够激发传播等离激元,条形宽度为170,180 nm 的 样品,其克尔谱λ=568 nm 附近出现峰值,且峰值 对应于反射谱的谷值,两个样品峰值位是一致的。 说明在该波长附近,传播等离激元波沿着钴/二氧 化铪的表面传播,在样品内积聚了部分电磁能量,导致反射的电磁波能量降低,使反射谱出现谷值,克尔谱出现峰值。这里仅条形宽度为160 nm克尔角发生翻转,显示磁光效应在该宽度附近发生了跃变,说明尺度效应对磁光性能的调控作用。

表面等离激元是光波引起的自由电子集体共振,而在可见光波段,金属表面反射光的偏振方向变化主要源于自由电子受到磁矩或磁场的作用(更确切地说应该是自旋-轨道耦合),两者都与自由电子密切相关。因此存在这样的可能性,即通过表面等离激元调控电子集体振荡相位,从而进一步影响磁光响应的相位。首先研究磁光相位可调性的是Bonanni及其合作者^[13],他们在玻璃衬底上制备了 具有不同直径大小的 Ni 纳米圆盘,并研究其等离 激元性质和纵克尔效应。

为了说明条形宽度为 160 nm 阵列克尔谱的翻转,利用 COMSOL 软件对条形宽度分别为 160, 180 nm纳米阵列场分量 E_z 空间分布进行计算。 图 3显示上述两种条形阵列的场分量 E_z 的空间分 布。在波长 λ =537 nm 处条形宽度为 160 nm 阵列 形成较强的电偶极激发,其激发强度明显强于条形 宽度为 180 nm 的激发强度。据此推断在入射波长 λ =537 nm 处条形宽度为 160 nm 阵列出现局域等 离激元共振,而条形宽度为 180 nm 阵列出现局域等 离激元共振。这说明,在保持周期不变条纹 宽度较宽的情形下,邻近纳米条的局域等离激元间 耦合作用变强,使得单根纳米条带电偶极激发的强 度降低,导致条纹宽度 170,180 nm 阵列的克尔谱 未能发生翻转。

图 3 沿入射面(z-x 面)4 层膜的条形阵列场分量 E_z 的空间分布。(a)宽度为 160 nm;
 (b)宽度为 180 nm。入射波长 λ=537 nm,入射角度 45°

Fig. 3 Distribution of electric field intensity E_z for cutting cross section (z-x coordinate plane). (a) With the stripe width of 160 nm; (b) with the stripe width of 180 nm. The incident wavelength is $\lambda = 537$ nm, the incident angle is 45°

以下讨论多层膜中间层二氧化铪(HfO₂)的厚 度对条形阵列磁光性能的影响。如图4所示,入 射光为p光。条形宽度为120 nm,条形高度为 80 nm,阵列的间距为330 nm。两阵列复合薄膜分 别是:HfO₂(15 nm)/Co(15 nm)/HfO₂(30 nm)/ Ag(40 nm),HfO₂(15 nm)/Co(15 nm)/HfO₂ (40 nm)/Ag(40 nm)。观察图4,两克尔谱均出现 极值,且极值位置均为 λ =531 nm,两克尔极值对 应的反射率均接近极小值。在保持其他条件相同, 仅改变中间层二氧化铪厚度的情况下,二氧化铪厚 度为30 nm 的阵列膜克尔极值符号没有翻转,而二 氧化铪厚度为40 nm 的阵列膜克尔极值符号发生 了翻转,这归因于两样品光学腔干涉效应的不同^[2]。 这里二氧化铪厚度为40 nm 的阵列膜克尔极值达 到-0.94°,约为单层钻膜克尔角的21倍^[14]。对于 周期为 330 nm 的条形阵列膜,按照公式(2)等离激 元的激发条件推算出,在 $\lambda = 531$ nm 附近能够激发 传播等离激元 SPP,由此判断,在 $\lambda = 531$ nm 出现 克尔效应的增强现象应源于光学腔效应与 SPP 激 发二者的耦合效应。

3.2 复合薄膜的极向磁光效应

前面讨论了条形阵列复合薄膜的纵向克尔效 应,这里进一步讨论条形阵列复合薄膜的极向克 尔效应。制备出复合薄膜阵列样品:条形阵列的 宽度为170 nm,高度为80 nm,周期为340 nm, 复合薄膜为:HfO₂(15 nm)/Co(15 nm)/HfO₂ (15,30,45 nm)/Ag(40 nm)。在克尔谱的测试 时,复合膜处于极向磁场,据图1 施加1.7 T的磁 场,足以保证15 nm的钴膜饱和磁化,取入射角为 $\theta=9^\circ$ 。

图 4 条形方向与入射面垂直时,不同中间层 HfO2厚度的样品的纵向克尔谱和反射谱。(a)纵向克尔谱,(b)反射谱 Fig. 4 Longitudinal Kerr spectra and reflectivity for the two samples with different thicknesses of HfO2 when the stripes' direction is perpendicular to the incident plane. (a) Longitudinal Kerr spectra; (b) reflection spectra

仍然取 p 光入射,且入射面与条形方向垂直。 利用(1)、(2)式,计算发现在波的衍射级次 n = -2, $\lambda = 480$ nm 和波的衍射级次 n = 1, $\lambda = 700$ nm 时,分别激发传播 SPP 波,对应于克尔角的两个峰值位(如图 5(a)箭头所指),相应的反射 率较低(图 5(b))。这说明等离激元激发时,光反射 减弱,而克尔信号增强。由于中间层 HfO2厚度不 同,法布里-珀罗干涉腔与等离激元耦合作用也就 不同,因而不同厚度的样品克尔谱曲线能够区分 开来。

图 5 3 种中间层厚度不同的样品的极向克尔谱和反射谱。(a)极克尔谱;(b)反射谱

Fig. 5 Polar Kerr spectra and reflection spectra of the samples with different intermediate layers' thicknesses of HfO_2 . (a) Polar Kerr spectra; (b) reflection spectra 而对于中间 HfO₂厚度为 15 nm 的样品,在 λ = 620 nm 处,出现较大的克尔增强峰,克尔角达到 3.5°。按照以上的计算,在该波长处,不能够产生

SPP 波。为进一步分析克尔增强的物理机制,利用 COMSOL 电磁软件,计算 $\lambda = 620$ nm 光场强度的 空间分布,如图 6 所示。

(a) HfO₂(15 nm)/Co (15 nm)/HfO₂(15 nm)/Ag (40 nm); (b) HfO₂(15 nm)/Co (15 nm)/HfO₂(45 nm)/Ag (40 nm)
Fig. 6 Distribution of normalized electric field intensity |E|/|E₀| in the cutting cross section parallel to z-x plane.
(a) HfO₂ (15 nm)/Co (15 nm)/HfO₂ (15 nm)/Ag (40 nm); (b) HfO₂ (15 nm)/Co (15 nm)/HfO₂ (45 nm)/

Ag (40 nm)

比较图 6(a),(b)数值计算的结果,可以看出中 间 HfO₂层厚度为 15 nm 的样品,在条形截面的两 侧有较强的局域等离激元 LSP 激发,而且在法布 里-珀罗光学腔内发生了光学干涉效应;中间 HfO₂ 层厚度为 45 nm 的样品,在条形截面的两侧电偶极 激发强度相对较弱,而且在法布里-珀罗光学腔内, 没出现明显的干涉强弱空间分布的特征。由此,推 断中间 HfO₂层厚度为 15 nm 样品内同时发生了 LSP 激发和光学干涉效应,两种效应的耦合作用, 使光学反射率大为降低,而光与磁性层的作用增强, 极大地提高了克尔响应的强度,所以在 $\lambda = 620$ nm 处出现了较大的克尔共振峰。

3.3 复合薄膜的横向磁光效应

进一步研究复合薄膜的横向克尔效应,样品取复 合薄膜为:HfO₂(15 nm)/Co(15 nm)/HfO₂(15 nm)/ Ag(40 nm),条形高度为80 nm,条宽为170 nm,周 期为350 nm。利用角分辨光谱系统测试了横向克 尔效应,磁场施加方向为平行膜面且与入射面垂直, 磁感应强度达1.59×10⁵ A/m,以使样品达到磁饱 和状态。继续取p光入射,且入射面与条形方向垂 直,如图7所示。

薄膜横向克尔信号的表达式为[15]

$$\delta = \frac{R(\mathbf{M}) - R(-\mathbf{M})}{R(0)},\tag{3}$$

式中:∂为横克尔信号的测量值;R(0)为薄膜不加 磁场时的反射率;R(M)为薄膜加正向磁场时的反 射率;R(-M)为薄膜加反向磁场时的反射率。

图 7 表明,采用这种多层起伏磁性薄膜,也能 明显增强横克尔信号,比非磁性衬底上的铋铁石 榴石磁性薄膜磁等离激元晶体克尔峰值提高约 4 倍^[15]。这源于多层光学腔效应与等离激元激发 的耦合作用。

另外,在入射角度不同情况下,横克尔峰值位发 生移动,其峰值位与反射率的谷值位对应。理论计 算可知,入射角 θ =45°,60°等离激元 SPP 激发的波 长分别为560,537 nm,与图 7 中箭头所指位置基 本一致。这说明当入射角不同时,由于入射波矢分 量 k_x 不同,致使 SPP 激发位置不同。横克尔峰与 SPP 激发位置一致,说明横克尔增强峰能够受等离 激元 SPP 的调制。

4 结 论

磁光效应是光功能材料中一种重要的物理效 应,在电子信息领域具有重要的应用,因此对磁性纳 米薄膜磁光效应的研究具有实际意义。利用干涉光 刻和磁控溅射镀膜,制备了大面积的周期性起伏的 磁性纳米复合薄膜。利用磁光测试装置对样品的纵

图 7 样品 HfO₂(15 nm)/Co(15 nm)/HfO₂(15 nm)/Ag(40 nm)的横向克尔谱和反射谱。(a)横向克尔谱;(b)反射谱 Fig. 7 Transverse Kerr spectra and reflection spectra. (a) Transverse Kerr spectra; (b) reflection spectra

向、极向和横向磁光克尔效应进行研究。实验发现, 薄膜磁光性能与条形的宽度和中间 HfO₂介质层的 厚度有关,复合薄膜的磁光增强效应和克尔谱存在 翻转现象;中间二氧化铪层厚为 40 nm 的 4 层薄膜 纵克尔峰值达到-0.94°,约为单层钴膜克尔角的 21 倍。进一步研究发现横克尔信号的增强效应。为了 阐述磁光效应增强的物理机制,利用 COMSOL 理 论模拟了薄膜内的光场分布,理论计算表明,等离激 元激发与法布里-珀罗腔的耦合作用能够极大增强 纳米薄膜的磁光性能。该实验结果能够为以磁光薄 膜为基础的光学器件设计提供参考。

致谢 感谢南京大学物理学院纳米磁学科研组提供 了实验测试和理论计算的帮助。

参考文献

- Postava K, Sveklo I, Tekielak M, et al. Material selective sensitivity of magneto-optical Kerr effect in NiFe/Au/Co/Au periodic multilayers[J]. IEEE Transactions on Magnetics, 2008, 44 (11): 3261-3264.
- [2] Kravets V G, Lapchuk A S. Enhancement of magneto-optical effects in magnetic nanoparticles near gold-dielectric surfaces[J]. Applied Optics, 2010, 49(26): 5013-5019.
- [3] Yang Z Y, Cai W, Zhang Z L, et al. Effect of magneto-optical material dielectric constant on

internal axial magnetic field of solenoid modulated by alternating current [J]. Acta Optica Sinica, 2018, 38(4): 0426002.

杨志勇, 蔡伟, 张志利, 等. 交变电流调制下磁光材 料介电常数对螺线管内部轴向磁场的影响[J]. 光学 学报, 2018, 38(4): 0426002.

- [4] Kravets V G. Ultrahigh-density magneto-optical recording based on the effect of plasmon excitations[J]. Optics and Spectroscopy, 2003, 95(1): 142-147.
- [5] Wang Z L. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3): 287-324.
 王振林.表面等离激元研究新进展[J].物理学进展,

2009, 29(3): 287-324.

- [6] Sapozhnikov M V, Gusev S A, Rogov V V, et al. Magnetic and optical properties of nanocorrugated Co films[J]. Applied Physics Letters, 2010, 96(12): 122507.
- [7] MacCaferri N, Inchausti X, García-Martín A, et al. Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2D magnetoplasmonic crystals [J]. ACS Photonics, 2015, 2(12): 1769-1779.
- [8] Qureshi N, Schmidt H, Hawkins A R. Cavity enhancement of the magneto-optic Kerr effect for optical studies of magnetic nanostructures [J]. Applied Physics Letters, 2004, 85(3): 431-433.
- [9] Zhang S Y, Gao J L, Xia W B, et al. Giant magnetooptical Kerr effect in HfO₂/Co/HfO₂/Al/silicon

structure[J]. Journal of Applied Physics, 2013, 114(6): 064308.

- [10] Zhang S Y, Xia W B, Li D Y, et al. Magneto-optical properties of one-dimensional orderly nanocorrugation made from magnetic quadrilayer films[J]. Optics Express, 2015, 23(13): 17531-17538.
- [11] Xia W B, Gao J L, Zhang S Y, et al. Optical and magneto-optical anisotropies in large-area twodimensional Co antidots film[J]. Optics Express, 2014, 22(2): 1359-1365.
- [12] Papaioannou E T, Kapaklis V, Melander E, et al. Surface plasmons and magneto-optic activity in

hexagonal Ni anti-dot arrays[J]. Optics Express, 2011, 19(24): 23867-23877.

- [13] Bonanni V, Bonetti S, Pakizeh T, et al. Designer magnetoplasmonics with nickel nanoferromagnets [J]. Nano Letters, 2011, 11(12): 5333-5338.
- [14] Zhang S Y, Gao J L, Xia W B, et al. Enhancement of longitudinal magneto-optical Kerr effect in HfO₂ / Co/HfO₂/Al/silicon thin films[J]. Optics Communications, 2014, 321: 226-229.
- Belotelov V I, Akimov I A, Pohl M, et al. Enhanced magneto-optical effects in magnetoplasmonic crystals
 [J]. Nature Nanotechnology, 2011, 6(6): 370-376.